论文标题
通过浸入薄壁结构的Lagrange乘数公式的分裂方案:稳定性和收敛分析
Splitting schemes for a Lagrange multiplier formulation of FSI with immersed thin-walled structure: stability and convergence analysis
论文作者
论文摘要
Lagrange倍增器与不可压缩的流体结构相互作用问题的数值近似通常基于强耦合方案。这提供了无条件的稳定性,但以每个时间步长以求解计算要求的耦合系统。对于与沉浸式薄壁固体耦合的情况,我们引入了一类半Plicing耦合方案,这些方案避免了强烈的耦合而不会损害稳定性和准确性。得出了先验的能量和误差估计。通过学术基准中的数值实验来说明理论结果。
The numerical approximation of incompressible fluid-structure interaction problems with Lagrange multiplier is generally based on strongly coupled schemes. This delivers unconditional stability but at the expense of solving a computationally demanding coupled system at each time-step. For the case of the coupling with immersed thin-walled solids, we introduce a class of semi-implicit coupling schemes which avoids strongly coupling without compromising stability and accuracy. A priori energy and error estimates are derived. The theoretical results are illustrated through numerical experiments in an academic benchmark.