论文标题
Inviscid表面准整形方程的经典解决方案的寿命
The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation
论文作者
论文摘要
我们考虑了无粘性表面准斑块方程的经典解,该方程是径向固定解决方案的小扰动$ε$ $θ= | x | $。我们使用修改的能量方法来证明经典解决方案的存在时间从$ \ frac {1}ε$到$ \ frac {1} {ε^4} $的时间尺度。此外,通过在合适的方向上扰动我们通过分叉构建全局平滑溶液,在时间和空间中均匀旋转。
We consider classical solutions of the inviscid Surface Quasi-geostrophic equation that are a small perturbation $ε$ from a radial stationary solution $θ=|x|$. We use a modified energy method to prove the existence time of classical solutions from $\frac{1}ε$ to a time scale of $\frac{1}{ε^4}$. Moreover, by perturbing in a suitable direction we construct global smooth solutions, via bifurcation, that rotate uniformly in time and space.