论文标题
联合学习用户身份验证模型
Federated Learning of User Authentication Models
论文作者
论文摘要
基于机器学习的用户身份验证(UA)模型已广泛部署在智能设备中。对UA模型进行了训练,可以将不同用户的输入数据映射到高度可分开的嵌入向量,然后将其用于在测试时接受或拒绝新的输入。培训UA模型需要直接访问原始输入和嵌入用户的向量,这两者都是对隐私敏感的信息。在本文中,我们提出了联合用户身份验证(FEDUA),这是一个对UA模型进行隐私培训的框架。 Fedua采用联合学习框架,以使一组用户能够共同培训模型而无需共享原始输入。它还允许用户将其嵌入作为随机二进制向量生成,因此,与现有的构造服务器构造嵌入的方法不同,嵌入向量也保持私密。我们表明我们的方法是隐私的,可扩展使用数量的用户,并允许新用户在不更改输出层的情况下添加到培训中。我们在Voxceleb数据集中进行的扬声器验证数据集的实验结果表明,我们的方法可靠地拒绝以非常真实的正速率的看不见的用户数据。
Machine learning-based User Authentication (UA) models have been widely deployed in smart devices. UA models are trained to map input data of different users to highly separable embedding vectors, which are then used to accept or reject new inputs at test time. Training UA models requires having direct access to the raw inputs and embedding vectors of users, both of which are privacy-sensitive information. In this paper, we propose Federated User Authentication (FedUA), a framework for privacy-preserving training of UA models. FedUA adopts federated learning framework to enable a group of users to jointly train a model without sharing the raw inputs. It also allows users to generate their embeddings as random binary vectors, so that, unlike the existing approach of constructing the spread out embeddings by the server, the embedding vectors are kept private as well. We show our method is privacy-preserving, scalable with number of users, and allows new users to be added to training without changing the output layer. Our experimental results on the VoxCeleb dataset for speaker verification shows our method reliably rejects data of unseen users at very high true positive rates.