论文标题

关于分离地图在非共同$ l^p $空间上的分解

On factorization of separating maps on noncommutative $L^p$-spaces

论文作者

Merdy, Christian Le, Zadeh, Safoura

论文摘要

对于任何半决赛von neumann代数$ {\ Mathcal M} $和任何$ 1 \ leq p <\ infty $,我们引入了一种natutal $ s^1 $ s^1 $ valued nont-valued nont-valued $ l^p $ -space $ -Space $ -Space $ l^p({\ Mathcal m};我们说,如果$ s^p({\ nathcal n})$是$ s^1 $ bounded(resp。$ s^1 $ - contractive),如果$ t \ otime imime i_ {s^1} $扩展到formimiese n forts n forsime { i_ {s^1} $来自$ l^p({\ Mathcal m}; s^1)$ to $ l^p({\ Mathcal n}; s^1)$。我们表明,任何完全积极的地图都是$ s^1 $ bunded,带有$ \ vert t \ overline {\ otimes} i_ {s^1} \ vert = \ vert = \ vert t \ vert $。我们将上述工具用作研究分离的映射$ t \ colon l^p({\ Mathcal m})\ to l^p({\ Mathcal n})$,该$接纳了直接的Yeadon类型分解,也就是说,即存在$ w^*$ - 连续$*$ - 连续$*$ - homomorphism $ j \ colon m} \ to {\ Mathcal n} $,{\ Mathcal n} $ in {\ Mathcal n} $的部分等轴测$ W \和一个阳性运算符$ b $与$ {\ Mathcal n} $相关的$ {\ Mathcal n} $,以便$ w^*w = j(1)= s(b)$,$ b $,$ b $ for $ j $ $ j $($ j $)(和$ j $ t()) {\ Mathcal M} \ CAP l^P({\ Mathcal M})$。给定一个分离的等距$ t \ colon l^p({\ Mathcal m})\ to l^p({\ Mathcal n})$,我们表明$ t $是$ s^1 $ - 合同,并且仅当它承认直接Yeadon类型分解时。我们进一步表明,如果$ p \ not = 2 $,则以上时,仅当$ t $完全承包时。

For any semifinite von Neumann algebra ${\mathcal M}$ and any $1\leq p<\infty$, we introduce a natutal $S^1$-valued noncommutative $L^p$-space $L^p({\mathcal M};S^1)$. We say that a bounded map $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ is $S^1$-bounded (resp. $S^1$-contractive) if $T\otimes I_{S^1}$ extends to a bounded (resp. contractive) map $T\overline{\otimes} I_{S^1}$ from $ L^p({\mathcal M};S^1)$ into $L^p({\mathcal N};S^1)$. We show that any completely positive map is $S^1$-bounded, with $\Vert T\overline{\otimes} I_{S^1}\Vert =\Vert T\Vert$. We use the above as a tool to investigate the separating maps $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ which admit a direct Yeadon type factorization, that is, maps for which there exist a $w^*$-continuous $*$-homomorphism $J\colon{\mathcal M}\to{\mathcal N}$, a partial isometry $w\in{\mathcal N}$ and a positive operator $B$ affiliated with ${\mathcal N}$ such that $w^*w=J(1)=s(B)$, $B$ commutes with the range of $J$, and $T(x)=wBJ(x)$ for any $x\in {\mathcal M}\cap L^p({\mathcal M})$. Given a separating isometry $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$, we show that $T$ is $S^1$-contractive if and only if it admits a direct Yeadon type factorization. We further show that if $p\not=2$, the above holds true if and only if $T$ is completely contractive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源