论文标题

减轻标签的负担:注意分支编码器网络的句子生成

Alleviating the Burden of Labeling: Sentence Generation by Attention Branch Encoder-Decoder Network

论文作者

Ogura, Tadashi, Magassouba, Aly, Sugiura, Komei, Hirakawa, Tsubasa, Yamashita, Takayoshi, Fujiyoshi, Hironobu, Kawai, Hisashi

论文摘要

国内服务机器人(DSR)是对家庭护理人员短缺的有前途解决方案。但是,DSR的主要局限性之一是它们无法通过语言自然互动。最近,数据驱动的方法已被证明可有效解决此限制。但是,它们通常需要大规模数据集,这是昂贵的。基于此背景,我们旨在执行自动句子的获取说明:例如,“给我带一个绿茶瓶。”这尤其具有挑战性,因为适当的表达取决于目标对象及其周围环境。在本文中,我们提出了注意分支编码网络(ABEN),以从视觉输入中生成句子。与其他方法不同,ABEN具有多模式的注意分支,该分支使用子字级的注意力,并根据子字嵌入生成句子。在实验中,我们使用图像字幕中的四个标准指标比较了ABEN与基线方法。结果表明,Aben在这些指标方面表现优于基线。

Domestic service robots (DSRs) are a promising solution to the shortage of home care workers. However, one of the main limitations of DSRs is their inability to interact naturally through language. Recently, data-driven approaches have been shown to be effective for tackling this limitation; however, they often require large-scale datasets, which is costly. Based on this background, we aim to perform automatic sentence generation of fetching instructions: for example, "Bring me a green tea bottle on the table." This is particularly challenging because appropriate expressions depend on the target object, as well as its surroundings. In this paper, we propose the attention branch encoder--decoder network (ABEN), to generate sentences from visual inputs. Unlike other approaches, the ABEN has multimodal attention branches that use subword-level attention and generate sentences based on subword embeddings. In experiments, we compared the ABEN with a baseline method using four standard metrics in image captioning. Results show that the ABEN outperformed the baseline in terms of these metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源