论文标题

使用分裂和隔离相关的分数对观察数据中高维个性化治疗规则的估计和推断

Estimation and inference on high-dimensional individualized treatment rule in observational data using split-and-pooled de-correlated score

论文作者

Liang, Muxuan, Choi, Young-Geun, Ning, Yang, Smith, Maureen A, Zhao, Ying-Qi

论文摘要

随着电子健康记录的越来越多的采用,对制定个性化治疗规则的兴趣越来越大,根据大量观察数据,根据患者的特征建议治疗。但是,在存在高维协变量的情况下,由于这种类型的数据而制定的此类规则缺乏有效的推理程序。在这项工作中,我们开发了一种受惩罚的强大方法,以从高维数据中估算最佳的个性化治疗规则。我们提出一个分裂和隔离相关的分数来构建假设检验和置信区间。我们的建议利用数据拆分来征服滋扰参数估计的缓慢收敛速率,例如用于结果回归或倾向模型的非参数方法。我们在高维设置中建立了分裂和隔离的DE相关得分测试和相应的单步估计器的限制分布。进行了模拟和实际数据分析以证明所提出方法的优越性。

With the increasing adoption of electronic health records, there is an increasing interest in developing individualized treatment rules, which recommend treatments according to patients' characteristics, from large observational data. However, there is a lack of valid inference procedures for such rules developed from this type of data in the presence of high-dimensional covariates. In this work, we develop a penalized doubly robust method to estimate the optimal individualized treatment rule from high-dimensional data. We propose a split-and-pooled de-correlated score to construct hypothesis tests and confidence intervals. Our proposal utilizes the data splitting to conquer the slow convergence rate of nuisance parameter estimations, such as non-parametric methods for outcome regression or propensity models. We establish the limiting distributions of the split-and-pooled de-correlated score test and the corresponding one-step estimator in high-dimensional setting. Simulation and real data analysis are conducted to demonstrate the superiority of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源