论文标题

团队:使用机器人网络进行探索和映射的三材料

TEAM: Trilateration for Exploration and Mapping with Robotic Networks

论文作者

Clark, Lillian, Andre, Charles, Galante, Joseph, Krishnamachari, Bhaskar, Psounis, Konstantinos

论文摘要

在Lunar勘探的激励下,我们考虑部署一个移动机器人网络来探索一个未知的环境,同时充当合作定位系统。机器人测量和传达与位置相关的数据,以便在没有基于基础架构的解决方案(例如固定信标或GPS)的情况下执行本地化。我们提出了用于探索和映射的三材料(团队),这是一种用于低复杂性定位和与机器人网络映射的新型算法。团队旨在利用机器人在机器人上的商业可用超宽带(UWB)无线电的能力,以厘米精度提供范围估计,并在共享的固定框架中执行无锚定位。它非常适合特征剥夺的环境,在这种环境中,基于功能的本地化方法受到影响。我们在不同的凉亭模拟环境以及带有Pozyx UWB无线电的Turtlebot3汉堡的测试床上提供了实验结果。我们将团队与流行的Rao-Blackwellized粒子过滤器进行比较,以同时定位和映射(SLAM)。我们证明,团队需要的计算复杂性较小,并通过数量级降低了激光雷达测量的必要样本速率。这些优点不需要牺牲性能,因为团队将最大定位误差降低了50%,并且在功能不足的环境中的MAP准确性提高了28%,并且在其他设置中的地图准确性可比。

Motivated by lunar exploration, we consider deploying a network of mobile robots to explore an unknown environment while acting as a cooperative positioning system. Robots measure and communicate position-related data in order to perform localization in the absence of infrastructure-based solutions (e.g. stationary beacons or GPS). We present Trilateration for Exploration and Mapping (TEAM), a novel algorithm for low-complexity localization and mapping with robotic networks. TEAM is designed to leverage the capability of commercially-available ultra-wideband (UWB) radios on board the robots to provide range estimates with centimeter accuracy and perform anchorless localization in a shared, stationary frame. It is well-suited for feature-deprived environments, where feature-based localization approaches suffer. We provide experimental results in varied Gazebo simulation environments as well as on a testbed of Turtlebot3 Burgers with Pozyx UWB radios. We compare TEAM to the popular Rao-Blackwellized Particle Filter for Simultaneous Localization and Mapping (SLAM). We demonstrate that TEAM requires an order of magnitude less computational complexity and reduces the necessary sample rate of LiDAR measurements by an order of magnitude. These advantages do not require sacrificing performance, as TEAM reduces the maximum localization error by 50% and achieves up to a 28% increase in map accuracy in feature-deprived environments and comparable map accuracy in other settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源