论文标题
热声学中的退化扰动理论:高阶敏感性和特殊点
Degenerate perturbation theory in thermoacoustics: high-order sensitivities and exceptional points
论文作者
论文摘要
在这项研究中,我们连接了最近在热声学中开发的概念,特别是(i)高阶光谱扰动理论,(ii)对称性诱导的退化热声模式,(iii)内在的热声模式,以及(iv)的特殊点。当系统的参数变化时,它们的连接有助于获得对热声谱的行为的物理洞察力。首先,我们将热声模式的高阶伴随扰动理论扩展到退化的情况。我们提供明确的公式,以计算任何顺序的特征值校正。这些公式适用于自我拥护者,非自我伴侣甚至非正常系统的有效。因此,它们可以应用于包括流体动力学在内的各种问题。其次,通过分析特征值校正的膨胀系数作为感兴趣参数的函数,我们可以准确估计功率序列的收敛半径。第三,我们将收敛的有限半径连接到参数空间中奇异性的存在。我们将这些奇异性确定为特殊点,与有缺陷的热声特征值相对应,对参数的无限变化具有无限的敏感性。在特殊点,两个特征值及其相关的特征向量合并。接近特征值轨迹的强烈转向接近特殊点。正如最近的工作中所证明的那样,由于声学和内在起源模式之间的相互作用,在热声系统中自然出现了特殊点。特殊点在热声系统中的作用为热声稳定性的物理和敏感性提供了新的启示,可以通过小型设计修改来利用这些稳定性来进行被动控制。
In this study, we connect concepts that have been recently developed in thermoacoustics, specifically, (i) high-order spectral perturbation theory, (ii) symmetry induced degenerate thermoacoustic modes, (iii) intrinsic thermoacoustic modes, and (iv) exceptional points. Their connection helps gain physical insight into the behaviour of the thermoacoustic spectrum when parameters of the system are varied. First, we extend high-order adjoint-based perturbation theory of thermoacoustic modes to the degenerate case. We provide explicit formulae for the calculation of the eigenvalue corrections to any order. These formulae are valid for self-adjoint, non-self-adjoint or even non-normal systems; therefore, they can be applied to a large range of problems, including fluid dynamics. Second, by analysing the expansion coefficients of the eigenvalue corrections as a function of a parameter of interest, we accurately estimate the radius of convergence of the power series. Third, we connect the existence of a finite radius of convergence to the existence of singularities in parameter space. We identify these singularities as exceptional points, which correspond to defective thermoacoustic eigenvalues, with infinite sensitivity to infinitesimal changes in the parameters. At an exceptional point, two eigenvalues and their associated eigenvectors coalesce. Close to an exceptional point, strong veering of the eigenvalue trajectories is observed. As demonstrated in recent work, exceptional points naturally arise in thermoacoustic systems due to the interaction between modes of acoustic and intrinsic origin. The role of exceptional points in thermoacoustic systems sheds new light on the physics and sensitivity of thermoacoustic stability, which can be leveraged for passive control by small design modifications.