论文标题

镜头空间的限制打结

Constrained knots in lens spaces

论文作者

Ye, Fan

论文摘要

在本文中,我们研究了一个特殊的$(1,1)$结的家族,称为“约束结”,其中包括3杆$ s^3 $中的2个桥结和镜头空间中的简单结。受约束的结被五个整数参数化,并以相应$(1,1)$图中的旋转$^c $结构的分布为特征。受约束结的打结浮子同源性$ \ widehat {hfk} $很薄。我们根据$ \ wideHat {hfk} $的计算以及结组的表现获得了约束结的完整分类。我们提供了许多与$ s^3 $链接的手术构建的约束结的示例,这些结与2桥结和1桥辫子有关。我们还展示了许多约束结的例子,这些结的结与简单的理想三角剖分是可定向双曲线1串歧管。

In this paper, we study a special family of $(1,1)$ knots called constrained knots, which includes 2-bridge knots in the 3-sphere $S^3$ and simple knots in lens spaces. Constrained knots are parameterized by five integers and characterized by the distribution of spin$^c$ structures in the corresponding $(1,1)$ diagrams. The knot Floer homology $\widehat{HFK}$ of a constrained knot is thin. We obtain a complete classification of constrained knots based on the calculation of $\widehat{HFK}$ and presentations of knot groups. We provide many examples of constrained knots constructed from surgeries on links in $S^3$, which are related to 2-bridge knots and 1-bridge braids. We also show many examples of constrained knots whose knot complements are orientable hyperbolic 1-cusped manifolds with simple ideal triangulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源