论文标题

二次核心的强大,基于感知的控制

Robust, Perception Based Control with Quadrotors

论文作者

Jarin-Lipschitz, Laura, Li, Rebecca, Nguyen, Ty, Kumar, Vijay, Matni, Nikolai

论文摘要

传统上,机器人系统中的控制器和状态估计器是独立设计的。控制器通常是设计出完美的状态估计的。但是,随着时间的流逝,状态估计方法(例如视觉惯性探射仪(VIO))会漂移,并可能导致系统表现不佳。虽然可以借助GP或运动捕获来纠正状态估计误差,但这些互补传感器并不总是可用或可靠。最近的工作表明,可以通过使用数据驱动的感知误差表征合成鲁棒控制器来解决此问题,并可以使用鲁棒性约束将系统的响应绑定到状态估计误差。我们使用VIO研究了这种强大的感知方法在四极管模型中的应用,以进行状态估计,并证明在模拟和硬件中使用此技术的好处和缺点。此外,为了使调整更容易,我们引入了一个新的成本函数,以用于控制综合中,该功能使人们可以采用现有的控制器并“鲁棒化”它。据我们所知,这是在实际硬件中实现的第一个强大的基于感知的控制器,也是一个利用数据驱动的感知模型的控制器。我们认为这是迈向安全,健壮的机器人的重要一步,可以明确说明感知和控制之间的固有依赖性。

Traditionally, controllers and state estimators in robotic systems are designed independently. Controllers are often designed assuming perfect state estimation. However, state estimation methods such as Visual Inertial Odometry (VIO) drift over time and can cause the system to misbehave. While state estimation error can be corrected with the aid of GPS or motion capture, these complementary sensors are not always available or reliable. Recent work has shown that this issue can be dealt with by synthesizing robust controllers using a data-driven characterization of the perception error, and can bound the system's response to state estimation error using a robustness constraint. We investigate the application of this robust perception-based approach to a quadrotor model using VIO for state estimation and demonstrate the benefits and drawbacks of using this technique in simulation and hardware. Additionally, to make tuning easier, we introduce a new cost function to use in the control synthesis which allows one to take an existing controller and "robustify" it. To the best of our knowledge, this is the first robust perception-based controller implemented in real hardware, as well as one utilizing a data-driven perception model. We believe this as an important step towards safe, robust robots that explicitly account for the inherent dependence between perception and control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源