论文标题

较高的尺寸黑洞标量

Higher dimensional black hole scalarization

论文作者

Astefanesei, Dumitru, Herdeiro, Carlos, Oliveira, João, Radu, Eugen

论文摘要

在最简单的标量调整理论中,其中标量场与RICCI标量无限耦合,电动汽车黑洞(BHS)的自发标量不会发生。这在更高维度的时间内不再是正确的,$ d> 4 $。我们考虑了标量tensor模型中较高维度的Reissner-NordströmBHS的标量,并为不同$ D $的零模式提供了结果,并在$ d = 5 $中明确构造了标量BHS的明确构造,并讨论了一些属性。我们还观察到,将该模型映射到爱因斯坦 - 马克斯维尔 - 刻画模型中,其中非最小耦合发生在标量场与麦克斯韦不变(而不是RICCI量表)之间,从而将非微耦合发生在两个模型中。接下来,我们考虑在均匀维度的扩展量表tensor-lovelock重力中Schwarzschild-Tangherlini BH的自发标量。在这些模型中,标量字段在$ d $ spaceTime dimensions中非最少耦合到$(d/2)^{th} $ euler密度。我们在$ d = 6,8 $中明确构建示例,显示四个维度情况的属性在质量上是通用的,但具有定量差异。我们将这些较高的$ D $标量BHS与Shift-Memmortric Horndeski理论中的毛茸茸的BHS进行了比较,我们也是相同的$ d $,我们也构建了。

In the simplest scalar-tensor theories, wherein the scalar field is non-minimally coupled to the Ricci scalar, spontaneous scalarization of electrovacuum black holes (BHs) does not occur. This ceases to be true in higher dimensional spacetimes, $d>4$. We consider the scalarization of the higher dimensional Reissner-Nordström BHs in scalar-tensor models and provide results on the zero modes for different $d$, together with an explicit construction of the scalarized BHs in $d=5$, discussing some of their properties. We also observe that a conformal transformation into the Einstein frame maps this model into an Einstein-Maxwel-scalar model, wherein the non-minimal coupling occurs between the scalar field and the Maxwell invariant (rather than the Ricci scalar), thus relating the occurence of scalarization in the two models. Next, we consider the spontaneous scalarization of the Schwarzschild-Tangherlini BH in extended-scalar-tensor-Lovelock gravity in even dimensions. In these models, the scalar field is non-minimally coupled to the $(d/2)^{th}$ Euler density, in $d$ spacetime dimensions. We construct explicitly examples in $d=6,8$, showing the properties of the four dimensional case are qualitatively generic, but with quantitative differences. We compare these higher $d$ scalarized BHs with the hairy BHs in shift-symmetric Horndeski theory, for the same $d$, which we also construct.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源