论文标题

通过流量吸引的单元格在超密集无线电访问网络中的能源优化

Energy Optimization in Ultra-Dense Radio Access Networks via Traffic-Aware Cell Switching

论文作者

Ozturk, Metin, Abubakar, Attai Ibrahim, Nadas, João Pedro Battistella, Rais, Rao Naveed Bin, Hussain, Sajjad, Imran, Muhammad Ali

论文摘要

下一代蜂窝网络5G中的超密集部署是通过使用户靠近基站来提供超高吞吐量的替代方法。另一方面,5G部署不得导致能源消耗大量增加,以使它们保持成本效益,最重要的是要减少蜂窝网络的碳足迹。我们提出了一种增强学习细胞切换算法的增强算法,以最大程度地减少超密集部署的能源消耗,而不会损害用户所经历的服务质量(QOS)。在这方面,提出的算法可以根据SCS和宏单元的交通负载在任何给定时间关闭哪些小单元(SC)。为了验证这个想法,我们使用了来自意大利米兰市的开放呼叫详细信息记录(CDR)数据集,并测试了我们的算法针对典型的操作基准解决方案。通过获得的结果,我们确切地证明了拟议算法可以提供节能的何时以及如何提供能源节省,此外,在不减少用户QoS的情况下发生这种情况。最重要的是,我们表明我们的解决方案的性能与详尽的搜索具有非常相似的性能,具有可扩展且不复杂的优势。

Ultra-dense deployments in 5G, the next generation of cellular networks, are an alternative to provide ultra-high throughput by bringing the users closer to the base stations. On the other hand, 5G deployments must not incur a large increase in energy consumption in order to keep them cost-effective and most importantly to reduce the carbon footprint of cellular networks. We propose a reinforcement learning cell switching algorithm, to minimize the energy consumption in ultra-dense deployments without compromising the quality of service (QoS) experienced by the users. In this regard, the proposed algorithm can intelligently learn which small cells (SCs) to turn off at any given time based on the traffic load of the SCs and the macro cell. To validate the idea, we used the open call detail record (CDR) data set from the city of Milan, Italy, and tested our algorithm against typical operational benchmark solutions. With the obtained results, we demonstrate exactly when and how the proposed algorithm can provide energy savings, and moreover how this happens without reducing QoS of users. Most importantly, we show that our solution has a very similar performance to the exhaustive search, with the advantage of being scalable and less complex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源