论文标题

自动映射:用于探索DNN工作负载分布式执行计划的DQN框架

Auto-MAP: A DQN Framework for Exploring Distributed Execution Plans for DNN Workloads

论文作者

Wang, Siyu, Rong, Yi, Fan, Shiqing, Zheng, Zhen, Diao, LanSong, Long, Guoping, Yang, Jun, Liu, Xiaoyong, Lin, Wei

论文摘要

最近十年见证了培训深神经网络的计算需求的增长。当前方法(例如,数据/模型并行性,管道并行性)将训练任务并行在多个设备上。但是,这些方法始终依靠特定的深度学习框架,需要精心设计的手动设计,这使得很难在不同类型的模型之间进行维护和共享。在本文中,我们提出了自动图,这是一个探索DNN工作负载的分布式执行计划的框架,该计划可以通过在深度学习模型的IR水平上加强学习来自动发现快速并行化策略。有效的探索仍然是增强学习的主要挑战。我们利用特定于任务的修剪策略来利用DQN,以帮助有效探索搜索空间,包括优化的策略。我们的评估表明,自动图可以在两个小时内找到最佳解决方案,同时在几个NLP和卷积模型上实现更好的吞吐量。

The last decade has witnessed growth in the computational requirements for training deep neural networks. Current approaches (e.g., data/model parallelism, pipeline parallelism) parallelize training tasks onto multiple devices. However, these approaches always rely on specific deep learning frameworks and requires elaborate manual design, which make it difficult to maintain and share between different type of models. In this paper, we propose Auto-MAP, a framework for exploring distributed execution plans for DNN workloads, which can automatically discovering fast parallelization strategies through reinforcement learning on IR level of deep learning models. Efficient exploration remains a major challenge for reinforcement learning. We leverage DQN with task-specific pruning strategies to help efficiently explore the search space including optimized strategies. Our evaluation shows that Auto-MAP can find the optimal solution in two hours, while achieving better throughput on several NLP and convolution models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源