论文标题
palatini $ f(r)$重力的连接条件
Junction conditions in Palatini $f(R)$ gravity
论文作者
论文摘要
我们使用张量分配方法来制定$ f(r)$重力的连接条件。这些条件是需要在某些超表面匹配的内部和外部区域的一致的引力体模型。其中一些条件与一般相对论的标准达摩 - 以色列及其公制$ f(r)$对应物不同。特别是,我们发现散装中应力 - 能量动量张量的痕迹必须在整个匹配的超表面上是连续的,尽管它的正常导数不需要。我们通过考虑恒星表面在多面年模型中的性质来说明这些条件的相关性,这表明具有潜在病理效应的状态方程范围已超出了身体感兴趣的领域。特别是确认,可以在Palatini $ f(r)$ Framework中安全地建模中子星和白矮人。
We work out the junction conditions for $f(R)$ gravity formulated in metric-affine (Palatini) spaces using a tensor distributional approach. These conditions are needed for building consistent models of gravitating bodies with an interior and exterior regions matched at some hypersurface. Some of these conditions depart from the standard Darmois-Israel ones of General Relativity and from their metric $f(R)$ counterparts. In particular, we find that the trace of the stress-energy momentum tensor in the bulk must be continuous across the matching hypersurface, though its normal derivative need not to. We illustrate the relevance of these conditions by considering the properties of stellar surfaces in polytropic models, showing that the range of equations of state with potentially pathological effects is shifted beyond the domain of physical interest. This confirms, in particular, that neutron stars and white dwarfs can be safely modelled within the Palatini $f(R)$ framework.