论文标题

四类四级属性的APN特性的完整表征

A complete characterization of the APN property of a class of quadrinomials

论文作者

Li, Kangquan, Li, Chunlei, Helleseth, Tor, Qu, Longjiang

论文摘要

在本文中,通过hasse-weil限制,我们确定了系数上的必要条件$ a_1,a_2,a_3 \ in \ mathbb {f} _ {2^n} $,$ n = 2m $,使$ f(x)= {x} = {x} = {x) a_2 x^{2^m + 2} + a_3x^3 $是$ \ mathbb {f} _ {2^n} $的APN函数。我们的结果解决了在2014年有限领域的算术算术的国际研讨会上的一个公开问题的上半年,2014年。

In this paper, by the Hasse-Weil bound, we determine the necessary and sufficient condition on coefficients $a_1,a_2,a_3\in\mathbb{F}_{2^n}$ with $n=2m$ such that $f(x) = {x}^{3\cdot2^m} + a_1x^{2^{m+1}+1} + a_2 x^{2^m+2} + a_3x^3$ is an APN function over $\mathbb{F}_{2^n}$. Our result resolves the first half of an open problem by Carlet in International Workshop on the Arithmetic of Finite Fields, 83-107, 2014.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源