论文标题

最大值测试高维图数据的横截面依赖性

Max-sum tests for cross-sectional dependence of high-demensional panel data

论文作者

Feng, Long, Jiang, Tiefeng, Liu, Binghui, Xiong, Wei

论文摘要

我们考虑了高维面板数据的横截面依赖性的测试问题,其中横截面单元的数量可能大于观测值的数量。横截面依赖性通过线性回归模型描述。我们研究了三个名为SUM测试的测试,最大测试和Max-SUM测试,其中后两种是新的。总和测试最初是由Breusch和Pagan(1980)提出的。我们分别设计了线性回归中稀疏和非SPARSE残差的最大和总和测试,并且设计了最大值测试以损害残差的两种情况。实际上,我们的仿真表明,最大值测试的表现优于前两个测试。这使得最大值测试在实践中非常有用,而对于一组数据通常含糊不清。为了对这三个测试进行理论分析,我们解决了两个猜想,内容涉及Pesaran(2004和2008)询问的样品相关系数的平方之和。此外,我们建立了针对样品相关系数最大值的渐近理论出现在面板数据的线性回归模型中,这也是我们知识的首次成功尝试。为了研究最大值测试,我们创建了一种新的方法来显示最大值和依赖性随机变量和总和之间的渐近独立性。我们希望该方法本身对于这种性质的其他问题很有用。最后,进行了广泛的模拟研究以及案例研究。他们证明了我们提出的方法在经验能力和残留物的鲁棒性方面都具有优势,无论是否有稀疏性。

We consider a testing problem for cross-sectional dependence for high-dimensional panel data, where the number of cross-sectional units is potentially much larger than the number of observations. The cross-sectional dependence is described through a linear regression model. We study three tests named the sum test, the max test and the max-sum test, where the latter two are new. The sum test is initially proposed by Breusch and Pagan (1980). We design the max and sum tests for sparse and non-sparse residuals in the linear regressions, respectively.And the max-sum test is devised to compromise both situations on the residuals. Indeed, our simulation shows that the max-sum test outperforms the previous two tests. This makes the max-sum test very useful in practice where sparsity or not for a set of data is usually vague. Towards the theoretical analysis of the three tests, we have settled two conjectures regarding the sum of squares of sample correlation coefficients asked by Pesaran (2004 and 2008). In addition, we establish the asymptotic theory for maxima of sample correlations coefficients appeared in the linear regression model for panel data, which is also the first successful attempt to our knowledge. To study the max-sum test, we create a novel method to show asymptotic independence between maxima and sums of dependent random variables. We expect the method itself is useful for other problems of this nature. Finally, an extensive simulation study as well as a case study are carried out. They demonstrate advantages of our proposed methods in terms of both empirical powers and robustness for residuals regardless of sparsity or not.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源