论文标题
量子哈密顿减少的通用简单性
Generic simplicity of quantum Hamiltonian reductions
论文作者
论文摘要
让一个还原的组$ g $在光滑的仿射复合物代数$ x上行动。$ $ \ m arthfrak {g} $是$ g $的lie代数,$ g $和$μ:t^*(x)\ to \ mathfrak {g} $ be Moment Map。如果力矩映射是平坦的,并且对于通用字符$χ:\ Mathfrak {g} \ to \ mathbb {c} $,则免费的$ g $在$ g $上的动作是免费的,那么我们向相应的Quantim Quantum hamiltonian restial nipl of nive nipal promistor $ d(x)$ d(x)$ d(X)
Let a reductive group $G$ act on a smooth affine complex algebraic variety $X.$ Let $\mathfrak{g}$ be the Lie algebra of $G$ and $μ:T^*(X)\to \mathfrak{g}$ be the moment map. If the moment map is flat, and for a generic character $χ:\mathfrak{g}\to\mathbb{C}$, the action of $G$ on $μ^{-1}(χ)$ is free, then we show that for very generic characters $χ$ the corresponding quantum Hamiltonian reduction of the ring of differential operators $D(X)$ is simple.