论文标题
单调演化系统的传播动力学无空间翻译不变性
Propagation Dynamics for Monotone Evolution Systems without Spatial Translation Invariance
论文作者
论文摘要
在本文中,在抽象的环境下,我们确定了空间不均匀的稳态的存在,以及一大类别单调进化系统的渐近传播特性,而无需空间翻译。然后,我们将开发的理论应用于研究流动波和时空传播模式,以进行时间延迟的非本地方程,圆柱体中的反应扩散方程以及渐近均匀的KPP型方程。我们还获得了固定溶液的存在和溶液的渐近扩散特性,用于延迟的反应 - 扩散方程,但受dirichlet边界条件的影响。
In this paper,under an abstract setting we establish the existence of spatially inhomogeneous steady states and the asymptotic propagation properties for a large class of monotone evolution systems without spatial translation invariance. Then we apply the developed theory to study traveling waves and spatio-temporal propagation patterns for time-delayed nonlocal equations, reaction-diffusion equations in a cylinder, and asymptotically homogeneous KPP-type equations. We also obtain the existence of steady state solutions and asymptotic spreading properties of solutions for a time-delayed reaction-diffusion equation subject to the Dirichlet boundary condition.