论文标题

用于考虑数据结构的分布式表示的谐振网络

Resonator networks for factoring distributed representations of data structures

论文作者

Frady, E. Paxon, Kent, Spencer, Olshausen, Bruno A., Sommer, Friedrich T.

论文摘要

通过支持基于规则的符号推理(一种认知的核心属性),具有分布式神经表示的编码和操纵数据结构的能力可以从定性地增强传统神经网络的能力。在这里,我们展示了如何在矢量符号体系结构(VSA)的框架内实现(Plate,1991; Gayler,1998; Kanerva,1996),在该框架中,通过将高维矢量与在分布式表示的空间上形成代数的操作来编码数据结构。特别是,我们提出了一个有效的解决方案,以解决一个硬组合搜索问题,该问题在解码VSA数据结构的元素时会出现:多个代码向量的产物的分解。我们提出的称为共振网络的算法是一种新型的经常性神经网络,它交织了VSA乘法操作和模式完成。我们在两个示例中展示了类似树状的数据结构和视觉场景解析的解析 - 分解问题如何出现以及谐振器网络如何解决。更广泛地说,谐振网络为在现实世界中的无数人工智能问题上应用VSA提供了可能性。同伴论文(Kent等,2020)对谐振网络的性能进行了严格的分析和评估,表明其表现以外的替代方法。

The ability to encode and manipulate data structures with distributed neural representations could qualitatively enhance the capabilities of traditional neural networks by supporting rule-based symbolic reasoning, a central property of cognition. Here we show how this may be accomplished within the framework of Vector Symbolic Architectures (VSA) (Plate, 1991; Gayler, 1998; Kanerva, 1996), whereby data structures are encoded by combining high-dimensional vectors with operations that together form an algebra on the space of distributed representations. In particular, we propose an efficient solution to a hard combinatorial search problem that arises when decoding elements of a VSA data structure: the factorization of products of multiple code vectors. Our proposed algorithm, called a resonator network, is a new type of recurrent neural network that interleaves VSA multiplication operations and pattern completion. We show in two examples -- parsing of a tree-like data structure and parsing of a visual scene -- how the factorization problem arises and how the resonator network can solve it. More broadly, resonator networks open the possibility to apply VSAs to myriad artificial intelligence problems in real-world domains. A companion paper (Kent et al., 2020) presents a rigorous analysis and evaluation of the performance of resonator networks, showing it out-performs alternative approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源