论文标题
通过经典的位额校正量子计算机中的测量误差缓解措施
Measurement Error Mitigation in Quantum Computers Through Classical Bit-Flip Correction
论文作者
论文摘要
我们开发了一种经典的位叉校正方法,以减轻量子计算机上的测量错误。此方法可以应用于任何操作员,任何数量的Qubits以及任何现实的位叉概率。我们首先通过纠正纵向ISING模型的基态能量的嘈杂测量结果来证明该方法的成功性能。然后,我们将结果推广到任意运算符,并在数值和实验上测试我们的方法在IBM量子硬件上。结果,我们的校正方法将量子硬件上的测量误差降低了一个数量级。我们最终讨论了如何预处理方法并将其扩展到超出测量错误之外的其他错误源。对于当地的汉密尔顿人来说,即使包括多量相关性,高架成本也是量子数的多项式。
We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers. This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability. We first demonstrate the successful performance of this method by correcting the noisy measurements of the ground-state energy of the longitudinal Ising model. We then generalize our results to arbitrary operators and test our method both numerically and experimentally on IBM quantum hardware. As a result, our correction method reduces the measurement error on the quantum hardware by up to one order of magnitude. We finally discuss how to pre-process the method and extend it to other errors sources beyond measurement errors. For local Hamiltonians, the overhead costs are polynomial in the number of qubits, even if multi-qubit correlations are included.