论文标题

肺部CT扫描的COVID-19患者的肺部不适化分割

Segmentation of Pulmonary Opacification in Chest CT Scans of COVID-19 Patients

论文作者

Lensink, Keegan, Laradji, Issam, Law, Marco, Barbano, Paolo Emilio, Nicolaou, Savvas, Parker, William, Haber, Eldad

论文摘要

严重的急性呼吸综合征冠状病毒2(SARS-COV-2)已迅速扩散到全球大流行中。一种与该病毒相关的最常见表现形式是一种肺炎形式,表现为患者的肺病,并且非常关注这些变化与患者的发病率和死亡率如何相关。在这项工作中,我们为胸部计算机断层扫描(CT)扫描的肺部不拼变模式提供了开源模型,这些模式与各种阶段和感染的严重程度相关。我们已经从世界各地的医疗保健中心收集了663张胸部CT扫描,对199例COVID患者,并为近25,000个切片创建了Pixel Wise分割标签,可分割6种不同模式的肺部不透明化模式。我们为在我们的数据集中培训的多个分割模型提供开源实现和预训练的权重。我们的最佳模型在我们的测试集中达到了不透明的联合会得分为0.76,展示了成功的域适应性,并预测了1.7 \%的专家放射科医生的无情量。此外,我们对此任务固有的观察者间变异性进行了分析,并提出了适当的概率方法的方法。

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has rapidly spread into a global pandemic. A form of pneumonia, presenting as opacities with in a patient's lungs, is the most common presentation associated with this virus, and great attention has gone into how these changes relate to patient morbidity and mortality. In this work we provide open source models for the segmentation of patterns of pulmonary opacification on chest Computed Tomography (CT) scans which have been correlated with various stages and severities of infection. We have collected 663 chest CT scans of COVID-19 patients from healthcare centers around the world, and created pixel wise segmentation labels for nearly 25,000 slices that segment 6 different patterns of pulmonary opacification. We provide open source implementations and pre-trained weights for multiple segmentation models trained on our dataset. Our best model achieves an opacity Intersection-Over-Union score of 0.76 on our test set, demonstrates successful domain adaptation, and predicts the volume of opacification within 1.7\% of expert radiologists. Additionally, we present an analysis of the inter-observer variability inherent to this task, and propose methods for appropriate probabilistic approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源