论文标题
人群中的人类轨迹预测:深度学习的观点
Human Trajectory Forecasting in Crowds: A Deep Learning Perspective
论文作者
论文摘要
自过去几十年以来,由于其众多现实应用程序,人类的轨迹预测一直是一个积极研究的领域:疏散状况分析,智能运输系统的部署,交通运营,仅举几例。早期作品基于领域知识手工制作了这种表示。但是,拥挤的环境中的社交互动不仅是多种多样的,而且通常是微妙的。最近,深度学习方法的表现优于手工制作的同行,因为他们以更通用的数据驱动方式了解了人类的互动。在这项工作中,我们对现有基于深度学习的方法进行建模社交互动的方法进行了深入分析。我们提出了两种基于知识的数据驱动方法,以有效捕获这些社交互动。为了客观地比较这些基于相互作用的预测模型的性能,我们开发了一个以大规模相互作用为中心的基准Trajnet ++,这是人类轨迹预测领域中的重要组成部分。我们提出了新的性能指标,以评估模型输出社会可接受的轨迹的能力。关于Trajnet ++的实验验证了我们提出的指标的需求,并且我们的方法在现实世界和合成数据集上都优于竞争基准。
Since the past few decades, human trajectory forecasting has been a field of active research owing to its numerous real-world applications: evacuation situation analysis, deployment of intelligent transport systems, traffic operations, to name a few. Early works handcrafted this representation based on domain knowledge. However, social interactions in crowded environments are not only diverse but often subtle. Recently, deep learning methods have outperformed their handcrafted counterparts, as they learned about human-human interactions in a more generic data-driven fashion. In this work, we present an in-depth analysis of existing deep learning-based methods for modelling social interactions. We propose two knowledge-based data-driven methods to effectively capture these social interactions. To objectively compare the performance of these interaction-based forecasting models, we develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting. We propose novel performance metrics that evaluate the ability of a model to output socially acceptable trajectories. Experiments on TrajNet++ validate the need for our proposed metrics, and our method outperforms competitive baselines on both real-world and synthetic datasets.