论文标题

最佳扰动在粘度分层通道中的早期演变

Early evolution of optimal perturbations in a viscosity-stratified channel

论文作者

Thakur, Ritabrata, Sharma, Arjun, Govindarajan, Rama

论文摘要

这项工作表明了粘度分层流中扰动生长的早期阶段与恒定粘度流中的流量以及非线性是一种关键成分的不同。我们得出了粘度变化的伴随纳维尔 - 斯托克斯方程,其中粘度的梯度都将伴随动量和伴随标量(此处温度)均具有。通过直接联合循环的技术,我们获得了非线性最佳扰动,从而最大程度地利用了非线性系统的扰动动能。当我们研究三维平面Poiseuille(通道)在不同温度下的壁流动和依赖温度的粘度时,我们的发现对于任何具有粘度变化的流动都是一般的。在我们的亚临界雷诺数下,ORR和改良的提升机制分别在低和高扰动幅度下运行。非线性最佳扰动在热(不那么粘性)的一侧包含更多的能量,并具有更强的初始提升。但是,随着流动的发展,重要的动力学转移到了寒冷(更粘)的一面,那里的低粘度的高速条纹增长和持久,并增强了速度曲线的弯曲质量。我们提供了此过程的物理描述,并表明线性最佳扰动的演变会错过大多数物理学。在这些时间,PrandTL编号不会在定性上影响这些发现。非线性最佳扰动的研究仍处于起步阶段,并且粘度变化无处不在。我们希望这项针对非线性最佳扰动的首次作品,并具有粘度变化,将导致对这些流中湍流过渡的更广泛研究。

This work shows how the early stages of perturbation growth in a viscosity-stratified flow are different from those in a constant-viscosity flow, and how nonlinearity is a crucial ingredient. We derive the viscosity-varying adjoint Navier-Stokes equations, where gradients in viscosity force both the adjoint momentum and the adjoint scalar (here temperature). By the technique of direct-adjoint looping, we obtain the nonlinear optimal perturbation which maximises the perturbation kinetic energy of the nonlinear system. While we study three-dimensional plane Poiseuille (channel) flow with the walls at different temperatures, and a temperature-dependent viscosity, our findings are general for any flow with viscosity variations near walls. The Orr and modified lift-up mechanisms are in operation at low and high perturbation amplitudes respectively at our subcritical Reynolds number. The nonlinear optimal perturbation contains more energy on the hot (less-viscous) side, with a stronger initial lift-up. However, as the flow evolves, the important dynamics shifts to the cold (more-viscous) side, where wide high-speed streaks of low viscosity grow and persist, and strengthen the inflectional quality of the velocity profile. We provide a physical description of this process, and show that the evolution of the linear optimal perturbation misses most of the physics. The Prandtl number does not qualitatively affect the findings at these times. The study of nonlinear optimal perturbations is still in its infancy, and viscosity variations are ubiquitous. We hope that this first work on nonlinear optimal perturbation with viscosity variations will lead to wider studies on transition to turbulence in these flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源