论文标题

紧急医疗服务临床审核系统,该系统由深度学习的指定实体识别驱动

An Emergency Medical Services Clinical Audit System driven by Named Entity Recognition from Deep Learning

论文作者

Han, Wang, Yeung, Wesley, Tung, Angeline, Meng, Joey Tay Ai, Ryanputera, Davin, Mengling, Feng, Arulanadam, Shalini

论文摘要

通常在紧急医疗服务(EMS)中进行临床性能审核,以确保遵守治疗方案,以确定补救措施的各个弱点,并发现系统缺陷以指导培训课程的发展。目前,这些审核是通过手动图表审查进行的,该评论既耗时又费力。在本文中,我们根据结构化和非结构化救护车病例记录和临床注释提出了一个自动审核系统,并具有深度神经网络的命名实体识别模型。本研究中使用的数据集包含2019年4月1日至2019年6月30日,新加坡民防部队遇到的58,898次未标记的救护车事件。采用了一种弱不足的训练方法来标记句子。后来,我们训练了三种不同的模型来执行NER任务。在实体类型匹配评估下,所有三个模型在严格的评估下都达到约0.981的F1得分,而Bilstm-CRF模型的F1得分比基于BERT的模型更轻,更快。总体而言,我们的方法产生了一个指定的实体识别模型,该模型可以可靠地从非结构化的护理人员自由文本报告中可靠地识别临床实体。我们提出的系统可以提高临床性能审核的效率,也可以帮助进行EMS数据库研究。

Clinical performance audits are routinely performed in Emergency Medical Services (EMS) to ensure adherence to treatment protocols, to identify individual areas of weakness for remediation, and to discover systemic deficiencies to guide the development of the training syllabus. At present, these audits are performed by manual chart review which is time-consuming and laborious. In this paper, we present an automatic audit system based on both the structured and unstructured ambulance case records and clinical notes with a deep neural network-based named entities recognition model. The dataset used in this study contained 58,898 unlabelled ambulance incidents encountered by the Singapore Civil Defence Force from 1st April 2019 to 30th June 2019. A weakly-supervised training approach was adopted to label the sentences. Later on, we trained three different models to perform the NER task. All three models achieve F1 scores of around 0.981 under entity type matching evaluation and around 0.976 under strict evaluation, while the BiLSTM-CRF model is 1~2 orders of magnitude lighter and faster than our BERT-based models. Overall, our approach yielded a named entity recognition model that could reliably identify clinical entities from unstructured paramedic free-text reports. Our proposed system may improve the efficiency of clinical performance audits and can also help with EMS database research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源