论文标题

全幻灯片成像的实例分割:端到端或检测到段

Instance Segmentation for Whole Slide Imaging: End-to-End or Detect-Then-Segment

论文作者

Jha, Aadarsh, Yang, Haichun, Deng, Ruining, Kapp, Meghan E., Fogo, Agnes B., Huo, Yuankai

论文摘要

肾脏全幻灯片成像(WSI)内肾小球的自动实例分割对于肾脏病理学的临床研究至关重要。在计算机视觉中,端到端实例分割方法(例如mask-rcnn)通过同时执行互补检测和分割任务来表明其优势相对于检测到段方法的优势。结果,端到端面膜-RCNN方法是最近的肾小球分割研究中的事实上的标准方法,在该研究中,使用下采样和基于斑块的技术来正确评估WSI的高分辨率图像(例如,40x> 10,000x10,000像素> 10,000x10,000像素)。但是,在高分辨率WSI中,单个肾小球本身的原始分辨率可以超过1,000x1,000像素,当通过Mask-RCNN管道降低相应特征地图时,会产生重大的信息丢失。在本文中,我们通过将mask-rcnn与我们建议的检测到的段框架进行比较,评估端到端实例分割框架是否最适合高分辨率WSI对象。除了进行这种比较之外,我们还通过以下方式全面评估了我们检测到的段管道的性能:1)两个最普遍的分割主链(U-NET和DEEPLAB_V3); 2)六个不同的图像分辨率(从512x512到28x28); 3)两个不同的颜色空间(RGB和实验室)。我们的检测到段管道,具有DEEPLAB_V3分割框架在先前检测到的512x512分辨率的肾小球上运行,与端到端蒙版-RCNN管道的0.902 DSC相比,达到了0.953骰子相似性系数(DSC)。此外,我们发现,在检测到段框架的背景下,RGB和实验室的颜色空间彼此相比均未产生更好的性能。与端到端方法相比,检测到段管道的分割性能更好。

Automatic instance segmentation of glomeruli within kidney Whole Slide Imaging (WSI) is essential for clinical research in renal pathology. In computer vision, the end-to-end instance segmentation methods (e.g., Mask-RCNN) have shown their advantages relative to detect-then-segment approaches by performing complementary detection and segmentation tasks simultaneously. As a result, the end-to-end Mask-RCNN approach has been the de facto standard method in recent glomerular segmentation studies, where downsampling and patch-based techniques are used to properly evaluate the high resolution images from WSI (e.g., >10,000x10,000 pixels on 40x). However, in high resolution WSI, a single glomerulus itself can be more than 1,000x1,000 pixels in original resolution which yields significant information loss when the corresponding features maps are downsampled via the Mask-RCNN pipeline. In this paper, we assess if the end-to-end instance segmentation framework is optimal for high-resolution WSI objects by comparing Mask-RCNN with our proposed detect-then-segment framework. Beyond such a comparison, we also comprehensively evaluate the performance of our detect-then-segment pipeline through: 1) two of the most prevalent segmentation backbones (U-Net and DeepLab_v3); 2) six different image resolutions (from 512x512 to 28x28); and 3) two different color spaces (RGB and LAB). Our detect-then-segment pipeline, with the DeepLab_v3 segmentation framework operating on previously detected glomeruli of 512x512 resolution, achieved a 0.953 dice similarity coefficient (DSC), compared with a 0.902 DSC from the end-to-end Mask-RCNN pipeline. Further, we found that neither RGB nor LAB color spaces yield better performance when compared against each other in the context of a detect-then-segment framework. Detect-then-segment pipeline achieved better segmentation performance compared with End-to-end method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源