论文标题

亚标准级和有限组中的可溶性

Subnormalizers and solvability in finite groups

论文作者

Gheri, Pietro

论文摘要

对于有限的$ g $,我们研究概率$ sp(g)$,鉴于两个元素$ x,y \ in g $,环状子组$ \ langle x \ rangle $在子组$ \ langle x,y \ rangle $中是亚正常。这可以看作是两个元素生成nilpotent子组的概率与两个元素生成可解决的子组的概率之间的中间不变的。我们证明,每个不可用的$ g $ $ sp(g)\ leq 1/6 $。

For a finite group $G$, we study the probability $sp(G)$ that, given two elements $x,y \in G$, the cyclic subgroup $\langle x \rangle$ is subnormal in the subgroup $\langle x, y \rangle$. This can be seen as an intermediate invariant between the probability that two elements generate a nilpotent subgroup and the probability that two elements generate a solvable subgroup. We prove that $sp(G) \leq 1/6$ for every nonsolvable group $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源