论文标题

自动平面调整骨科内部平板探测器CT-illumes

Automatic Plane Adjustment of Orthopedic Intraoperative Flat Panel Detector CT-Volumes

论文作者

Vicario, Celia Martín, Kordon, Florian, Denzinger, Felix, Weiten, Markus, Thomas, Sarina, Kausch, Lisa, Franke, Jochen, Keil, Holger, Maier, Andreas, Kunze, Holger

论文摘要

平板计算机断层扫描术中用于评估手术结果。由于工作流问题,收购通常无法以轴对齐的多平台重建(MPR)的方式进行,卷的卷与解剖学上的MPR相匹配。需要手动执行此操作,在查看数据集时增加额外的精力。训练了Posenet卷积神经网络(CNN),以使解剖上比对的MPR平面的参数被回归。比较了描述平面旋转的不同数学方法,并且优化了成本函数以纳入方向约束。在两个解剖区域评估了CNN。对于其中一个区域,一个平面与其他两个平面不是正交的。可以以5°的中位精度为6°的平面内旋转,并且位置的精度为6 mm,可以估计平面的正常水平。与最新的算法相比,该方法的标签工作要低得多,因为不需要分割。推理期间的计算时间小于0.05 s。

Flat panel computed tomography is used intraoperatively to assess the result of surgery. Due to workflow issues, the acquisition typically cannot be carried out in such a way that the axis aligned multiplanar reconstructions (MPR) of the volume match the anatomically aligned MPRs. This needs to be performed manually, adding additional effort during viewing the datasets. A PoseNet convolutional neural network (CNN) is trained such that parameters of anatomically aligned MPR planes are regressed. Different mathematical approaches to describe plane rotation are compared, as well as a cost function is optimized to incorporate orientation constraints. The CNN is evaluated on two anatomical regions. For one of these regions, one plane is not orthogonal to the other two planes. The plane's normal can be estimated with a median accuracy of 5°, the in-plane rotation with an accuracy of 6°, and the position with an accuracy of 6 mm. Compared to state-of-the-art algorithms the labeling effort for this method is much lower as no segmentation is required. The computation time during inference is less than 0.05 s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源