论文标题

差异 - 代数电力系统模型的僵局表面:基于入学矩阵的解释

Impasse Surface of Differential-Algebraic Power System Models: An Interpretation Based on Admittance Matrices

论文作者

Song, Yue, Hill, David J., Liu, Tao, Zhang, Xinran

论文摘要

僵局表面是功率系统的差分 - 代数方程(DAE)模型的重要概念,该模型与短期电压塌陷有关。本文为系统轨迹击中僵局表面建立了必要的条件。该条件是关于功率网络,发电机和负载的接收矩阵,该矩阵指定了可能诱导电压崩溃的那些系统组件之间的相互作用模式。它适用于具有高阶同步发电机,静态负载,感应电动机负载和有损功率网络的通用DAE型号。我们还确定了一类静电负载参数,以防止电源系统撞击僵局表面;这证明了Hiskens做出的猜想数十年来一直无法解决。此外,获得的结果导致了电压塌陷的早期指标,并且对电力网络的感应补偿的新观点对防止短期电压塌陷具有积极作用,这些电压通过数值模拟得到了验证。

The impasse surface is an important concept in the differential-algebraic equation (DAE) model of power systems, which is associated with short-term voltage collapse. This paper establishes a necessary condition for a system trajectory hitting the impasse surface. The condition is in terms of admittance matrices regarding the power network, generators and loads, which specifies the pattern of interaction between those system components that can induce voltage collapse. It applies to generic DAE models featuring high-order synchronous generators, static loads, induction motor loads and lossy power networks. We also identify a class of static load parameters that prevent power systems from hitting the impasse surface; this proves a conjecture made by Hiskens that has been unsolved for decades. Moreover, the obtained results lead to an early indicator of voltage collapse and a novel viewpoint that inductive compensation to the power network has a positive effect on preventing short-term voltage collapse, which are verified via numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源