论文标题

基于特征分布之间最佳传输的纹理合成的生成模型

A Generative Model for Texture Synthesis based on Optimal Transport between Feature Distributions

论文作者

Houdard, Antoine, Leclaire, Arthur, Papadakis, Nicolas, Rabin, Julien

论文摘要

我们提出了GOTEX,这是一个通过优化限制局部特征的统计分布的纹理合成的一般框架。尽管我们的模型涵盖了几种现有的纹理模型,但我们专注于特征分布之间比较依赖最佳传输距离的情况。我们表明,即使这些特征生活在高维空间中,最佳传输的半偶尔公式也可以控制各种可能的特征的分布。然后,我们研究所得的最小优化问题,该问题与Wasserstein生成模型相对应,该模型可以通过标准随机梯度方法来解决内部凹面最大化问题。替代优化算法在应用程序,功能和体系结构方面被证明是通用的。特别是它允许产生具有不同特征集的高质量合成纹理。我们通过约束斑块的分布或对预度的VGG神经网络的响应分布来分析获得的结果。我们表明,补丁表示可以更精确地检索所需的纹理方面。我们还提供了与最先进的纹理合成方法的详细比较。基于补丁功能的GOTEX模型也适用于纹理介入和纹理插值。最后,我们展示了如何使用我们的框架学习一个可以快速合成任意大小的新纹理的馈送神经网络。实验结果和与文献中主流方法的比较说明了与GOTEX学到的生成模型的相关性。

We propose GOTEX, a general framework for texture synthesis by optimization that constrains the statistical distribution of local features. While our model encompasses several existing texture models, we focus on the case where the comparison between feature distributions relies on optimal transport distances. We show that the semi-dual formulation of optimal transport allows to control the distribution of various possible features, even if these features live in a high-dimensional space. We then study the resulting minimax optimization problem, which corresponds to a Wasserstein generative model, for which the inner concave maximization problem can be solved with standard stochastic gradient methods. The alternate optimization algorithm is shown to be versatile in terms of applications, features and architecture; in particular it allows to produce high-quality synthesized textures with different sets of features. We analyze the results obtained by constraining the distribution of patches or the distribution of responses to a pre-learned VGG neural network. We show that the patch representation can retrieve the desired textural aspect in a more precise manner. We also provide a detailed comparison with state-of-the-art texture synthesis methods. The GOTEX model based on patch features is also adapted to texture inpainting and texture interpolation. Finally, we show how to use our framework to learn a feed-forward neural network that can synthesize on-the-fly new textures of arbitrary size in a very fast manner. Experimental results and comparisons with the mainstream methods from the literature illustrate the relevance of the generative models learned with GOTEX.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源