论文标题

Loukas的粗糙

Hierarchical and Unsupervised Graph Representation Learning with Loukas's Coarsening

论文作者

Béthune, Louis, Kaloga, Yacouba, Borgnat, Pierre, Garivier, Aurélien, Habrard, Amaury

论文摘要

我们提出了一种具有归因图的无监督图表示学习的新算法。它结合了解决文献当前局限性的三个优势:i)模型是归纳的:它可以在存在新数据的情况下嵌入新图; ii)该方法通过在不同尺度上查看属性图来考虑微结构和宏观结构。 iii)该模型是端到端可区分的:它是一个可以插入深度学习管道并允许向后传播的构建块。我们表明,将具有强大理论保证的粗糙方法与共同信息最大化相结合,足以产生高质量的嵌入。我们通过文献的共同基准对它们进行分类任务进行评估。我们表明,在无监督的图表学习方法中,我们的算法与最先进的算法具有竞争力。

We propose a novel algorithm for unsupervised graph representation learning with attributed graphs. It combines three advantages addressing some current limitations of the literature: i) The model is inductive: it can embed new graphs without re-training in the presence of new data; ii) The method takes into account both micro-structures and macro-structures by looking at the attributed graphs at different scales; iii) The model is end-to-end differentiable: it is a building block that can be plugged into deep learning pipelines and allows for back-propagation. We show that combining a coarsening method having strong theoretical guarantees with mutual information maximization suffices to produce high quality embeddings. We evaluate them on classification tasks with common benchmarks of the literature. We show that our algorithm is competitive with state of the art among unsupervised graph representation learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源