论文标题
来自宇宙缺陷网络的重力波的不可还原背景:数值技术的更新和比较
Irreducible background of gravitational waves from a cosmic defect network: update and comparison of numerical techniques
论文作者
论文摘要
早期宇宙中的宇宙学相变可能会以宇宙缺陷网络的形式产生文物。随着网络能量量张量的适应性,缺陷独立于相变的顺序,缺陷的拓扑及其全局或衡量性质,将发射重力波(GWS),以维持{缩放}。我们表明,任何缺陷网络的演变(在此方面,任何缩放来源)都以频谱$ω_ {\ rm gw} \ propto f^3 $ for $ f \ ll f_0 $,$ f_0 $,$ for f_0 $,$ gw} _ {\ rm gw} \ for $ f_0 $ f _ f _ f _ f _ f _ f _ f _ f _ f _ f _ f _ f _ f _ f _ f _ f _ f _ f _ f_0 $ f _ f _ f_0 $ f^2 $ f _ f_0 eq} $,和$ω_ {\ rm gw} \ propto〜const $(即〜完全刻度不变),适用于$ f \ gg f _ {\ rm eq} $,其中$ f_0 $ and $ f_0 $ and $ f _ {\ rm eq} $分别对频率进行了对应的频率和现在的频率。该背景代表了从宇宙缺陷的任何缩放网络中GWS的不可还原发射,其幅度仅以对称性断裂尺度和缺陷的性质为特征。使用经典晶格模拟,我们计算出在全局对称$ O(n)\ rightarrow o(n-1)$破坏后产生的缺陷发出的GW信号。我们通过两种不同的技术在2到20之间以$ n $ 2的价格获得GW频谱:在能量动量张量的不等时间相关器中集成,更新了我们先前在较小晶格上的工作,并首次将结果与张力驱动的实时演变进行了比较,以相同的缺陷来源。我们的结果验证了两种技术的等效性。在缺陷的能量量表上使用CMB上限,我们讨论了在全球缺陷情况下检测该GW背景的困难。
Cosmological phase transitions in the early Universe may produce relics in the form of a network of cosmic defects. Independently of the order of a phase transition, topology of the defects, and their global or gauge nature, the defects are expected to emit gravitational waves (GWs) as the network energy-momentum tensor adapts itself to maintaining {scaling}. We show that the evolution of any defect network (and for that matter any scaling source) emits a GW background with spectrum $Ω_{\rm GW} \propto f^3$ for $f \ll f_0$, $Ω_{\rm GW} \propto 1/f^2$ for $f_0 \lesssim f \lesssim f_{\rm eq}$, and $Ω_{\rm GW} \propto~const$ (i.e.~exactly scale-invariant) for $f \gg f_{\rm eq}$, where $f_0$ and $ f_{\rm eq}$ denote respectively the frequencies corresponding to the present and matter-radiation equality horizons. This background represents an irreducible emission of GWs from any scaling network of cosmic defects, with its amplitude characterized only by the symmetry breaking scale and the nature of the defects. Using classical lattice simulations we calculate the GW signal emitted by defects created after the breaking of a global symmetry $O(N) \rightarrow O(N-1)$. We obtain the GW spectrum for $N$ between 2 and 20 with two different techniques: integrating over unequal time correlators of the energy momentum tensor, updating our previous work on smaller lattices, and for the first time, comparing the result with the real time evolution of the tensor perturbations sourced by the same defects. Our results validate the equivalence of the two techniques. Using CMB upper bounds on the defects' energy scale, we discuss the difficulty of detecting this GW background in the case of global defects.