论文标题
通过流化的流动学习
Manifold Learning via Manifold Deflation
论文作者
论文摘要
非线性维度降低方法为可视化和解释高维数据提供了有价值的手段。但是,由于诸如噪声脆弱性,重复的特征,凸体和边界偏见等问题,许多流行方法也可能会急剧失败,即使在简单的二维流形上,也可能会发生巨大失败。我们得出了Riemannian流形的一种嵌入方法,即迭代地使用单色估计来消除从基础差分运算符中消除尺寸,从而“放气” IT。这些差异操作员已显示出表征任何局部频谱降低方法的表征。我们方法的关键是一种新颖的,增量的切线空间估计器,它在添加坐标时结合了全局结构。当坐标收敛到真正的坐标时,我们证明了它的一致性。从经验上讲,我们显示了我们的算法恢复在现实世界和合成数据集上的新颖而有趣的嵌入。
Nonlinear dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data. However, many popular methods can fail dramatically, even on simple two-dimensional manifolds, due to problems such as vulnerability to noise, repeated eigendirections, holes in convex bodies, and boundary bias. We derive an embedding method for Riemannian manifolds that iteratively uses single-coordinate estimates to eliminate dimensions from an underlying differential operator, thus "deflating" it. These differential operators have been shown to characterize any local, spectral dimensionality reduction method. The key to our method is a novel, incremental tangent space estimator that incorporates global structure as coordinates are added. We prove its consistency when the coordinates converge to true coordinates. Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.