论文标题
通过定量建模和合成生物学来推进耐药性研究
Advancing Drug Resistance Research Through Quantitative Modeling and Synthetic Biology
论文作者
论文摘要
抗菌素耐药性是一种新兴的全球健康危机,正在破坏现代医学的进步,如果不明智的话,可能会在2050年到2050年每年杀死全球1000万人。在过去的十年中,研究表明,在同一环境中,遗传相同细胞之间的差异会导致耐药性。受基因调节网络调节的基因表达的波动会导致非遗传异质性,从而导致微生物群体的分数杀死导致药物疗法失败。这种非遗传耐药性可以提高获得遗传耐药性突变的可能性。基因网络的数学模型可以阐明抗药性耐药性的一般原则,预测抗性的演变,并指导实验室中的耐药性实验。经过基因工程的细胞携带调节耐药性基因的合成基因网络,可以对非遗传异质性在耐药性发展中的作用进行控制,定量实验。在这篇观点文章中,我们强调了数学,计算和合成基因网络模型在促进我们对抗菌素抵抗的理解以发现有效抗药性感染疗法方面发挥的作用。
Antimicrobial resistance is an emerging global health crisis that is undermining advances in modern medicine and, if unmitigated, threatens to kill 10 million people per year worldwide by 2050. Research over the last decade has demonstrated that the differences between genetically identical cells in the same environment can lead to drug resistance. Fluctuations in gene expression, modulated by gene regulatory networks, can lead to non-genetic heterogeneity that results in the fractional killing of microbial populations causing drug therapies to fail; this non-genetic drug resistance can enhance the probability of acquiring genetic drug resistance mutations. Mathematical models of gene networks can elucidate general principles underlying drug resistance, predict the evolution of resistance, and guide drug resistance experiments in the laboratory. Cells genetically engineered to carry synthetic gene networks regulating drug resistance genes allow for controlled, quantitative experiments on the role of non-genetic heterogeneity in the development of drug resistance. In this perspective article, we emphasize the contributions that mathematical, computational, and synthetic gene network models play in advancing our understanding of antimicrobial resistance to discover effective therapies against drug-resistant infections.