论文标题
在有限体积的双曲线3个manifolds中完全脐带
Totally umbilic surfaces in hyperbolic 3-manifolds of finite volume
论文作者
论文摘要
我们为有限的负欧特性的每个连接的表面$ s $构造,并且[0,1)$中的每个$ h \ y \ in [0,1)$,一个有限体积的夸张的3个manifold $ n(s,h)$,以及适当的,两边的,完全脐带嵌入$ f \ colon s \ colon s \ to n(s,h),均为curvature $ h $ h $ h $ h $。相反,我们证明,嵌入在双曲线3型有限体积中的完整的,完全脐带的表面,具有平均曲率$ h \ [0,1)$必须是正确的,并且具有有限的负欧特征。
We construct for every connected surface $S$ of finite negative Euler characteristic and every $H \in [0,1)$, a hyperbolic 3-manifold $N(S,H)$ of finite volume and a proper, two-sided, totally umbilic embedding $f\colon S\to N(S,H)$ with mean curvature $H$. Conversely, we prove that a complete, totally umbilic surface with mean curvature $H \in [0,1)$ embedded in a hyperbolic 3-manifold of finite volume must be proper and have finite negative Euler characteristic.