论文标题

在有限体积的双曲线3个manifolds中完全脐带

Totally umbilic surfaces in hyperbolic 3-manifolds of finite volume

论文作者

Adams, Colin, Meeks III, William H., Ramos, Alvaro K.

论文摘要

我们为有限的负欧特性的每个连接的表面$ s $构造,并且[0,1)$中的每个$ h \ y \ in [0,1)$,一个有限体积的夸张的3个manifold $ n(s,h)$,以及适当的,两边的,完全脐带嵌入$ f \ colon s \ colon s \ to n(s,h),均为curvature $ h $ h $ h $ h $。相反,我们证明,嵌入在双曲线3型有限体积中的完整的,完全脐带的表面,具有平均曲率$ h \ [0,1)$必须是正确的,并且具有有限的负欧特征。

We construct for every connected surface $S$ of finite negative Euler characteristic and every $H \in [0,1)$, a hyperbolic 3-manifold $N(S,H)$ of finite volume and a proper, two-sided, totally umbilic embedding $f\colon S\to N(S,H)$ with mean curvature $H$. Conversely, we prove that a complete, totally umbilic surface with mean curvature $H \in [0,1)$ embedded in a hyperbolic 3-manifold of finite volume must be proper and have finite negative Euler characteristic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源