论文标题
等温组成模拟的平滑配方,并改善了非线性收敛
Smooth Formulation for Isothermal Compositional Simulation with Improved Nonlinear Convergence
论文作者
论文摘要
组成模拟具有挑战性,因为具有热力学相行为的多孔介质中多组分流之间的高度非线性耦合。耦合的非线性系统通常通过完全尺寸的方案来解决。已经提出了各种组成配方。但是,在常规配方下可能会出现牛顿求解器的严重收敛问题。跨相边界会在离散方程式中产生扭结,然后引起牛顿迭代的振荡甚至差异。这项工作的目的是开发一种平滑的公式,以消除与相变相关的所有属性开关和不连续性。我们表明,直接平滑保护方程可能非常困难和昂贵。因此,我们首先重新制定耦合系统,以便将不连续性转移到相位平衡模型中。通过这种方式,可以实现一个单一而简洁的非平滑方程,然后可以进行平滑近似。带有平滑参数的新公式提供了所有相位机制变量的平滑跃迁。此外,我们采用了一种延续方法,该方法逐渐向目标系统发展。我们使用几个复杂的问题评估了新的平滑公式和持续方法的效率。与标准的自然配方相比,开发的配方和方法表现出优质的非线性收敛行为。连续方法导致平稳稳定的迭代性能,对解决方案的准确性产生了可观的影响。此外,它在无参数调整的情况下可用于多种流量条件。
Compositional simulation is challenging, because of highly nonlinear couplings between multi-component flow in porous media with thermodynamic phase behavior. The coupled nonlinear system is commonly solved by the fully-implicit scheme. Various compositional formulations have been proposed. However, severe convergence issues of Newton solvers can arise under the conventional formulations. Crossing phase boundaries produces kinks in discretized equations, and subsequently causing oscillations or even divergence of Newton iterations. The objective of this work is to develop a smooth formulation that removes all the property switches and discontinuities associated with phase changes. We show that it can be very difficult and costly to smooth the conservation equations directly. Therefore, we first reformulate the coupled system, so that the discontinuities are transferred to the phase equilibrium model. In this way a single and concise non-smooth equation is achieved and then a smoothing approximation can be made. The new formulation with a smoothing parameter provides smooth transitions of variables across all the phase regimes. In addition, we employ a continuation method where the solution progressively evolves toward the target system. We evaluate the efficiency of the new smooth formulation and the continuation method using several complex problems. Compared to the standard natural formulation, the developed formulation and method exhibit superior nonlinear convergence behaviors. The continuation method leads to smooth and stable iterative performance, with a negligible impact on solution accuracy. Moreover, it works robustly for a wide range of flow conditions without parameter tuning.