论文标题

通过使用组$ g_ {n}^{k} $和$γ_{n}^{k} $来研究复杂流形

Studying complex manifolds by using groups $G_{n}^{k}$ and $Γ_{n}^{k}$

论文作者

Manturov, Vassily Olegovich, Wan, Zheyan

论文摘要

在本文中,我们通过使用以下想法来研究几个复杂的歧管。首先,我们构建了某个模量空间,并研究了该空间的基本组。该基本组自然映射到组$ g_ {n}^{k} $和$γ_{n}^{k} $。这是$ g_ {n}^{k} $和$γ_{n}^{k} $接近$ g_ {n}^{k} $的“络合”步骤。

In the present paper, we study several complex manifolds by using the following idea. First, we construct a certain moduli space and study the fundamental group of this space. This fundamental group is naturally mapped to the groups $G_{n}^{k}$ and $Γ_{n}^{k}$. This is the step towards "complexification" of the $G_{n}^{k}$ and $Γ_{n}^{k}$ approach first developed in \cite{2019arXiv190508049M}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源