论文标题
具有灵活的类成员组件的半非偏见潜在选择模型:混合模型方法
Semi-nonparametric Latent Class Choice Model with a Flexible Class Membership Component: A Mixture Model Approach
论文作者
论文摘要
这项研究提出了具有灵活的类成员组件的半非标准潜在类选择模型(LCCM)。提出的模型使用混合模型作为传统随机效用规范的替代方法来制定潜在类别,以比较各种措施的两种方法,包括预测准确性和选择过程中异质性的表示。混合模型是基于参数模型的聚类技术,已在机器学习,数据挖掘和模式识别等领域广泛使用,用于聚类和分类问题。为估计所提出的模型的估计得出了期望最大化(EM)算法。使用在旅行模式选择行为上的两个不同案例研究,根据参数估计的符号,时间的价值,统计拟合优度测量和交叉验证测试,将提出的模型与传统的离散选择模型进行比较。结果表明,混合模型通过提供更好的异质性表述而不削弱选择模型的行为和经济解释性,通过提供更好的样本外预测准确性来改善潜在类选择模型的整体性能。
This study presents a semi-nonparametric Latent Class Choice Model (LCCM) with a flexible class membership component. The proposed model formulates the latent classes using mixture models as an alternative approach to the traditional random utility specification with the aim of comparing the two approaches on various measures including prediction accuracy and representation of heterogeneity in the choice process. Mixture models are parametric model-based clustering techniques that have been widely used in areas such as machine learning, data mining and patter recognition for clustering and classification problems. An Expectation-Maximization (EM) algorithm is derived for the estimation of the proposed model. Using two different case studies on travel mode choice behavior, the proposed model is compared to traditional discrete choice models on the basis of parameter estimates' signs, value of time, statistical goodness-of-fit measures, and cross-validation tests. Results show that mixture models improve the overall performance of latent class choice models by providing better out-of-sample prediction accuracy in addition to better representations of heterogeneity without weakening the behavioral and economic interpretability of the choice models.