论文标题

设计基于机器学习的无线链接质量分类器

On Designing a Machine Learning Based Wireless Link Quality Classifier

论文作者

Cerar, Gregor, Yetgin, Halil, Mohorčič, Mihael, Fortuna, Carolina

论文摘要

确保无线网络中的可靠通信严格取决于对链路质量的有效估计,当无线电信号的传播环境显着变化时,这尤其具有挑战性。在这种环境中,正在研究可以提供可提供鲁棒,弹性和适应性链接的智能算法,以补充传统算法在维持可靠的通信方面。在这方面,使用机器学习(ML)算法的数据驱动链接质量估计(LQE)是最有前途的方法之一。在本文中,我们对在所选的公开数据集中开发基于ML的无线LQE的每个步骤中所做的每个步骤进行的设计决策进行了定量评估。我们的研究表明,重新采样以实现培训类平衡和特征工程对LQE的最终性能的影响要比选择ML方法在选定数据上更大。

Ensuring a reliable communication in wireless networks strictly depends on the effective estimation of the link quality, which is particularly challenging when propagation environment for radio signals significantly varies. In such environments, intelligent algorithms that can provide robust, resilient and adaptive links are being investigated to complement traditional algorithms in maintaining a reliable communication. In this respect, the data-driven link quality estimation (LQE) using machine learning (ML) algorithms is one of the most promising approaches. In this paper, we provide a quantitative evaluation of design decisions taken at each step involved in developing a ML based wireless LQE on a selected, publicly available dataset. Our study shows that, re-sampling to achieve training class balance and feature engineering have a larger impact on the final performance of the LQE than the selection of the ML method on the selected data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源