论文标题
近裂尖塑性的原子建模
Atomistic modelling of near-crack-tip plasticity
论文作者
论文摘要
在抗平面剪切运动学下,在平面晶格上的近裂尖端可塑性的原子模型进行了制定和研究。该模型基于晶格歧管复合物的新几何和功能框架,该框架可确保完全考虑裂纹表面,同时保留二元性的关键概念。结果,建立了包含裂纹开口和脱位的局部稳定平衡构型的存在。值得注意的是,由于裂纹表面的形式的边界是构成裂纹表面的形式,因此不需要位错芯与裂纹表面或裂纹尖端之间的最小分离。此处介绍的工作构成了一些进一步研究的基础,目的是将近裂纹尖端可塑性现象放在严格的基础上。
An atomistic model of near-crack-tip plasticity on a square lattice under anti-plane shear kinematics is formulated and studied. The model is based upon a new geometric and functional framework of a lattice manifold complex, which ensures that the crack surface is fully taken into account, while preserving the crucial notion of duality. As a result, existence of locally stable equilibrium configurations containing both a crack opening and dislocations is established. Notably, with the boundary in the form of a crack surface accounted for, no minimum separation between a dislocation core and the crack surface or the crack tip is required. The work presented here constitutes a foundation for several further studies aiming to put the phenomenon of near-crack-tip plasticity on a rigorous footing.