论文标题
在某些非共同空间上的异构体研究中的极端方法
Extreme point methods in the study of isometries on certain non-commutative spaces
论文作者
论文摘要
在本文中,我们表征了某些类别的与半限定的von neumann代数相关的非共同空间的汇聚等异构体:lorentz空间$ l^{w,1} $,以及$ l^1+l^1+l^\ infty $和$ l^\ infty $和$ l^1 \ cap l^\ cap l^\ flty $。在所有三种情况下使用的技术都依赖于这些空间单位球的极端点的特征。特别有趣的是,本文获得的异构体的表示是全球表示。
In this paper we characterize surjective isometries on certain classes of non-commutative spaces associated with semi-finite von Neumann algebras: the Lorentz spaces $L^{w,1}$, as well as the spaces $L^1+L^\infty$ and $L^1\cap L^\infty$. The technique used in all three cases relies on characterizations of the extreme points of the unit balls of these spaces. Of particular interest is that the representations of isometries obtained in this paper are global representations.