论文标题
针对各种哈密顿量和光谱密度的开放量子动力学的精确量子模拟
Exact and efficient quantum simulation of open quantum dynamics for various of Hamiltonians and spectral densities
论文作者
论文摘要
最近,我们在理论上提出并在实验上证明了对核磁共振中的光合光收获(NMR)的精确有效的量子模拟,参见。 B. X. Wang,\ textit {等} npj Quantum inf。〜\ textbf {4},52(2018)。在本文中,我们采用这种方法来模拟具有不同汉密尔顿人的各种光合系统中的开放量子动力学。通过数值模拟,我们表明,对于Drude-Lorentz的光谱密度,分别在供体和受体簇内具有强耦合的二聚几何形状表现出显着改良的效率。基于最佳几何形状,我们还证明,当供体和受体簇之间的能量间隙与光谱密度的峰值匹配时,可以进一步优化总体能量转移。此外,通过探索不同类型的光谱密度的量子动力学,例如欧姆,亚饰和超级光谱密度,我们表明我们的方法可以推广以有效地模拟各种哈密顿量和光谱密度的开放量子动力学。因为$ \ log_ {2} n $ Qubits是$ n $维量子系统的量子模拟所必需的,所以与流行的数值外观方法相比,这种量子仿真方法可以大大降低计算复杂性。
Recently, we have theoretically proposed and experimentally demonstrated an exact and efficient quantum simulation of photosynthetic light harvesting in nuclear magnetic resonance (NMR), cf. B. X. Wang, \textit{et al.} npj Quantum Inf.~\textbf{4}, 52 (2018). In this paper, we apply this approach to simulate the open quantum dynamics in various photosynthetic systems with different Hamiltonians. By numerical simulations, we show that for Drude-Lorentz spectral density the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly-improved efficiency. Based on the optimal geometry, we also demonstrate that the overall energy transfer can be further optimized when the energy gap between the donor and acceptor clusters matches the peak of the spectral density. Moreover, by exploring the quantum dynamics for different types of spectral densities, e.g. Ohmic, sub-Ohmic, and super-Ohmic spectral densities, we show that our approach can be generalized to effectively simulate open quantum dynamics for various Hamiltonians and spectral densities. Because $\log_{2}N$ qubits are required for quantum simulation of an $N$-dimensional quantum system, this quantum simulation approach can greatly reduce the computational complexity compared with popular numerically-exact methods.