论文标题
(2+1) - 二维集成KDV方程
Painlevé property, local and nonlocal symmetries and symmetry reductions for a (2+1)-dimensional integrable KdV equation
论文作者
论文摘要
通过使用Kruskal的简化,证明了(2+1) - 维korteweg-de Vries(KDV)扩展的Parelevé特性,合并KP3(KDOMTSEV-PETVIASHVILI)和KP4(CKP3-4)。截断的Parelevé扩展用于找到Schwartz形式,Bäcklund/Levi变换和残留的非局部对称性。剩余的对称性本地化以找到其有限的Bäcklund变换。该模型的局部点对称性构成了无中心的kac-moody-virasoro代数。局部点对称性用于查找相关的组不变减少,包括具有第四阶频谱问题的新的LAX可集成模型。使用直接方法获得有限变换定理或躺点对称组。
The Painlevé property for a (2+1)-dimensional Korteweg-de Vries (KdV) extension, the combined KP3 (Kadomtsev- Petviashvili) and KP4 (cKP3-4) is proved by using Kruskal's simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac-Moody-Virasoro algebra. The local point symmetries are used to find the related group invariant reductions including a new Lax integrable model with a fourth order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.