论文标题

分布Zeta功能的系统性绩效指标

Systemic Performance Measures from Distributional Zeta-Function

论文作者

Rodríguez-Camargo, C. D., Urquijo-Rodríguez, A. F., Mojica-Nava, E. A.

论文摘要

我们建议使用分布Zeta功能(DZF)来构建一套新的系统性绩效指标(SPM)。已提出SPM来研究网络合成问题,例如线性共识网络的增长。 DZF的采用表现出有趣的物理后果,即在通常的复制方法中仍然没有汇总,即自发对称性破坏机制与无序模型中复制空间的结构之间的联系。我们通过使用系统的光谱和哈密顿结构来将网络的拓扑与DZF中存在的分区函数联系起来。所研究的对象是广义分区功能,DZF,复制分区函数的预期值以及场网络的淬火自由能。我们表明,使用这些对象,我们需要很少的操作来增加网络的性能增强百分比。此外,我们通过光谱zeta函数,$ \ nathcal {h} _ {2} $ - norm-narm和节点之间的沟通性来评估每个新SPM的最佳添加链接的位置,并计算每个新SPM的新网络的性能提高。我们介绍了网络合成中这组新型SPM的优势,并提出了其他使用DZF探索某些问题的方法,例如疾病,批判现象,有限温度和对网络的有限尺寸影响。讨论了结果的相关性。

We propose the use of the Distributional Zeta-Function (DZF) for constructing a new set of Systemic Performance Measures (SPM). SPM have been proposed to investigate network synthesis problems such as the growing of linear consensus networks. The adoption of the DZF has shown interesting physical consequences that in the usual replica method are still unclarified, i.e., the connection between the spontaneous symmetry breaking mechanism and the structure of the replica space in the disordered model. We relate topology of the network and the partition function present in the DZF by using the spectral and the Hamiltonian structure of the system. The studied objects are the generalized partition funcion, the DZF, the Expected value of the replica partition function, and the quenched free energy of a field network. We show that with these objects we need few operations to increase the percentage of performance enhancement of a network. Furthermore, we evalue the location of the optimal added links for each new SPM and calculate the performance improvement of the new network for each new SPM via the spectral zeta function, $\mathcal{H}_{2}$-norm, and the communicability between nodes. We present the advantages of this new set of SPM in the network synthesis and we propose other methods for using the DZF to explore some issues such as disorder, critical phenomena, finite-temperature, and finite-size effects on networks. Relevance of the results are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源