论文标题
用于模型检查和控制不确定离散时间系统的临时逻辑树
Temporal Logic Trees for Model Checking and Control Synthesis of Uncertain Discrete-time Systems
论文作者
论文摘要
我们提出了用于在线性时间逻辑(LTL)规范下进行离散时间不确定系统进行模型检查和控制合成的算法。我们通过可及性分析从LTL公式构建时间逻辑树(TLT)。与基于自动机的方法相反,TLT的构建对于无限系统是无抽象的,即,我们不会构造无限系统的离散抽象。此外,对于给定的过渡系统和LTL公式,我们分别通过最小和最大的可及性分析证明了普遍的TLT和存在性TLT。我们表明,通用TLT是LTL公式的不足,并且存在性TLT是过度贴二的。我们提供了足够的条件和必要条件,以验证过渡系统是否通过使用TLT近似值满足LTL公式。作为这项工作的主要贡献,对于受控的过渡系统和LTL公式,我们证明可以通过控制依赖性可及性分析从LTL公式构建受控的TLT。基于受控的TLT,我们设计了一种在线控制综合算法,在该算法下,可以在每个时间步骤中生成一组可行的控制输入。我们还证明了该算法是可行的。我们用两个模拟示例说明了有限和无限系统的建议方法,并突出显示了通用性和在线可扩展性。
We propose algorithms for performing model checking and control synthesis for discrete-time uncertain systems under linear temporal logic (LTL) specifications. We construct temporal logic trees (TLT) from LTL formulae via reachability analysis. In contrast to automaton-based methods, the construction of the TLT is abstraction-free for infinite systems, that is, we do not construct discrete abstractions of the infinite systems. Moreover, for a given transition system and an LTL formula, we prove that there exist both a universal TLT and an existential TLT via minimal and maximal reachability analysis, respectively. We show that the universal TLT is an underapproximation for the LTL formula and the existential TLT is an overapproximation. We provide sufficient conditions and necessary conditions to verify whether a transition system satisfies an LTL formula by using the TLT approximations. As a major contribution of this work, for a controlled transition system and an LTL formula, we prove that a controlled TLT can be constructed from the LTL formula via control-dependent reachability analysis. Based on the controlled TLT, we design an online control synthesis algorithm, under which a set of feasible control inputs can be generated at each time step. We also prove that this algorithm is recursively feasible. We illustrate the proposed methods for both finite and infinite systems and highlight the generality and online scalability with two simulated examples.