论文标题

图像美学预测使用多个补丁保留了内容的原始宽高比

Image Aesthetics Prediction Using Multiple Patches Preserving the Original Aspect Ratio of Contents

论文作者

Wang, Lijie, Wang, Xueting, Yamasaki, Toshihiko

论文摘要

社交网络服务的传播创造了对选择,编辑和产生令人印象深刻的图像的不断增长的需求。这种趋势增加了评估图像美学作为自动图像处理的互补功能的重要性。我们提出了一种称为MPA-NET(多斑点聚合网络)的多斑点方法,以通过维护图像中内容的原始长宽比来预测图像美学得分。通过涉及包含250,000张图像的大规模AVA数据集的实验,我们表明,与单点预测和随机补丁选择方法相比,相等间隔的多斑点选择方法的有效性是显着的。对于此数据集,MPA-NET优于神经图像评估算法,该算法被认为是基线方法。特别是,MPA-NET的美学得分的线性相关系数(LCC)升高0.073(11.5%),而Spearman的等级相关系数(SRCC)较高0.088(14.4%)。 MPA-NET还将均方根误差(MSE)降低了0.0115(4.18%),并在LCC和SRCC上获得与最先进的连续美学评分预测方法相当的LCC和SRCC的结果。最值得注意的是,MPA-NET产生的MSE显着较低,尤其是对于宽高比远非1.0的图像,这表明MPA-NET对于多种图像纵横比有用。 MPA-NET仅使用图像,并且在培训期间或预测阶段不需要外部信息。因此,除了其他人类主观性预测,MPA-NET除了美学评分预测外,还具有巨大的应用潜力。

The spread of social networking services has created an increasing demand for selecting, editing, and generating impressive images. This trend increases the importance of evaluating image aesthetics as a complementary function of automatic image processing. We propose a multi-patch method, named MPA-Net (Multi-Patch Aggregation Network), to predict image aesthetics scores by maintaining the original aspect ratios of contents in the images. Through an experiment involving the large-scale AVA dataset, which contains 250,000 images, we show that the effectiveness of the equal-interval multi-patch selection approach for aesthetics score prediction is significant compared to the single-patch prediction and random patch selection approaches. For this dataset, MPA-Net outperforms the neural image assessment algorithm, which was regarded as a baseline method. In particular, MPA-Net yields a 0.073 (11.5%) higher linear correlation coefficient (LCC) of aesthetics scores and a 0.088 (14.4%) higher Spearman's rank correlation coefficient (SRCC). MPA-Net also reduces the mean square error (MSE) by 0.0115 (4.18%) and achieves results for the LCC and SRCC that are comparable to those of the state-of-the-art continuous aesthetics score prediction methods. Most notably, MPA-Net yields a significant lower MSE especially for images with aspect ratios far from 1.0, indicating that MPA-Net is useful for a wide range of image aspect ratios. MPA-Net uses only images and does not require external information during the training nor prediction stages. Therefore, MPA-Net has great potential for applications aside from aesthetics score prediction such as other human subjectivity prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源