论文标题
$^{56} $ ni贝壳作为IA类型超新星的早期光曲线的来源的调查
An investigation of $^{56}$Ni shells as the source of early light curve bumps in type Ia supernovae
论文作者
论文摘要
在少数情况下,已经观察到了IA型超新星的早期光曲线中过量的通量(即颠簸)。已经提出了多种情况来解释这一点。已经表明,对于至少一个对象(SN〜2018OH),观察到的过剩排放可能是外部弹出中大量$^{56} $ ni的结果($ \ sim $ 0.03〜 $ m _ {\ rm {\ rm {\ odot}}} $)。我们提供了一系列的模型光曲线和光谱,其中包含$^{56} $ ni弹壳(0.01、0.02、0.03和0.04〜 $ M _ {\ rm {\ rm {\ odot}}} $)和widths。我们发现,即使对于我们最低的质量$^{56} $ ni壳,\ textGreater2幅度也会在爆炸后的第二天在相对于没有$^{56} $ ni shell的模型的一天中产生。我们表明,具有$^{56} $ ni外壳的模型的颜色演变与没有的模型明显不同,并显示出类似于一些双重爆炸的颜色反转。我们的$^{56} $ ni shell模型的光谱表明,$ \ sim $ 3 \,700-4 \,000〜 $Å$在接近最大光线的$ \ sim $ 3 \之间的强烈抑制似乎是此类模型的通用功能。将我们的模型与SNE〜2017CBV和2018OH的观察结果进行比较,我们表明,$^{56} $ ni壳为0.02-0.04〜 $ M _ {\ rm {\ rm {\ odot}} $可以匹配早期光学光曲线的形状,但是Colorve bumps,但颜色和光谱进化是不相同的。这表明需要替代通量过剩的替代起源。基于现有的爆炸场景,在不存在其他短寿命放射性材料的情况下,在不匹配光曲线形状的情况下,在外部喷射中产生这样的$^{56} $ ni外壳可能会证明具有挑战性。鉴于在光曲线中产生颠簸需要少量的$^{56} $ ni,因此,如果出现的话,外弹射器中的非单调减少$^{56} $ ni分布必须很少见。
An excess of flux (i.e. a bump) in the early light curves of type Ia supernovae has been observed in a handful of cases. Multiple scenarios have been proposed to explain this. It has been shown that for at least one object (SN~2018oh) the excess emission observed could be the result of a large amount of $^{56}$Ni in the outer ejecta ($\sim$0.03~$M_{\rm{\odot}}$). We present a series of model light curves and spectra for ejecta profiles containing $^{56}$Ni shells of varying masses (0.01, 0.02, 0.03, and 0.04~$M_{\rm{\odot}}$) and widths. We find that even for our lowest mass $^{56}$Ni shell, an increase of \textgreater2 magnitudes is produced in the bolometric light curve at one day after explosion relative to models without a $^{56}$Ni shell. We show that the colour evolution of models with a $^{56}$Ni shell differs significantly from those without and shows a colour inversion similar to some double-detonation explosions. Spectra of our $^{56}$Ni shell models show that strong suppression of flux between $\sim$3\,700 -- 4\,000~$Å$ close to maximum light appears to be a generic feature for this class of model. Comparing our models to observations of SNe~2017cbv and 2018oh, we show that a $^{56}$Ni shell of 0.02 -- 0.04~$M_{\rm{\odot}}$ can match shapes of the early optical light curve bumps, but the colour and spectral evolution are in disagreement. This would indicate that an alternative origin for the flux excess is necessary. Based on existing explosion scenarios, producing such a $^{56}$Ni shell in the outer ejecta as required to match the light curve shape, without the presence of additional short-lived radioactive material, may prove challenging. Given that only a small amount of $^{56}$Ni in the outer ejecta is required to produce a bump in the light curve, such non-monotonically decreasing $^{56}$Ni distributions in the outer ejecta must be rare, if they were to occur at all.