论文标题
Speckle2Void:深深的自我监督的SAR与盲点卷积神经网络
Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot Convolutional Neural Networks
论文作者
论文摘要
斑点噪声从合成孔径雷达(SAR)图像中提取的信息提取,因此,拼接是场景分析算法中至关重要的初步步骤。深度学习的最新成功设想了一种新一代的幻想技术,可以超越基于古典模型的方法。但是,当前的深度学习方法需要监督培训,而干净的SAR图像是无法获得的。在文献中,通过诉诸于合成斑点的光学图像来解决此问题,这些光学图像相对于真实的SAR图像表现出不同的特性,或者具有多个暂时性的SAR图像,或者很难准确获取或融合。在本文中,受到盲点DeNoising网络的最新作品的启发,我们提出了一种自欺欺人的贝叶斯式佩克林方法。所提出的方法是仅使用嘈杂的SAR图像的训练方法,因此可以学习真实SAR图像的特征,而不是合成数据。实验表明,所提出的方法的性能非常接近于综合数据的监督训练方法,并且在定量和视觉评估中对实际数据进行了优越。
Information extraction from synthetic aperture radar (SAR) images is heavily impaired by speckle noise, hence despeckling is a crucial preliminary step in scene analysis algorithms. The recent success of deep learning envisions a new generation of despeckling techniques that could outperform classical model-based methods. However, current deep learning approaches to despeckling require supervision for training, whereas clean SAR images are impossible to obtain. In the literature, this issue is tackled by resorting to either synthetically speckled optical images, which exhibit different properties with respect to true SAR images, or multi-temporal SAR images, which are difficult to acquire or fuse accurately. In this paper, inspired by recent works on blind-spot denoising networks, we propose a self-supervised Bayesian despeckling method. The proposed method is trained employing only noisy SAR images and can therefore learn features of real SAR images rather than synthetic data. Experiments show that the performance of the proposed approach is very close to the supervised training approach on synthetic data and superior on real data in both quantitative and visual assessments.