论文标题

在低级复发网络中使用多个种群的动力学塑造动力学

Shaping dynamics with multiple populations in low-rank recurrent networks

论文作者

Beiran, Manuel, Dubreuil, Alexis, Valente, Adrian, Mastrogiuseppe, Francesca, Ostojic, Srdjan

论文摘要

一个新兴的范式提出,可以在控制集体神经活动的低维轨迹的动力系统级别上理解神经计算。但是,网络的连通性结构如何确定新兴的动力系统尚待澄清。在这里,我们考虑了一类新型的模型,即高斯混合型低级复发网络,其中连通性矩阵的等级和统计定义的人群的数量是独立的超参数。我们表明,由此产生的集体动力学形成了动力学系统,在该系统中,等级设置了维度,人口结构塑造了动力学。特别是,可以根据相互作用的潜在变量的简化有效电路来描述集体动力学。尽管拥有一个单一的全球人口强烈限制了可能的动态,但我们证明,如果人口数量足够大,那么等级-R网络可以近似任何R维动力系统。

An emerging paradigm proposes that neural computations can be understood at the level of dynamical systems that govern low-dimensional trajectories of collective neural activity. How the connectivity structure of a network determines the emergent dynamical system however remains to be clarified. Here we consider a novel class of models, Gaussian-mixture low-rank recurrent networks, in which the rank of the connectivity matrix and the number of statistically-defined populations are independent hyper-parameters. We show that the resulting collective dynamics form a dynamical system, where the rank sets the dimensionality and the population structure shapes the dynamics. In particular, the collective dynamics can be described in terms of a simplified effective circuit of interacting latent variables. While having a single, global population strongly restricts the possible dynamics, we demonstrate that if the number of populations is large enough, a rank-R network can approximate any R-dimensional dynamical system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源