论文标题

通过混合学习通过多尺度暴露融合通过多尺度暴露融合来亮片

Single Image Brightening via Multi-Scale Exposure Fusion with Hybrid Learning

论文作者

Zheng, Chaobing, Li, Zhengguo, Yang, Yi, Wu, Shiqian

论文摘要

一个小的ISO和较小的曝光时间通常用于在背面或低光条件下捕获图像,从而导致图像具有微不足道的运动模糊和小噪音,但看起来很黑。在本文中,引入了单个图像增亮算法来增亮此类图像。提出的算法包括一个独特的混合学习框架,以生成具有较大曝光时间的两个虚拟图像。虚拟图像首先是通过使用摄像机响应函数(CRF)计算的强度映射函数(IMF)生成的,这是一种模型驱动的方法。然后,通过使用数据驱动的方法,即一个残留的卷积神经网络来增强两个虚拟图像,以接近地面真相图像。模型驱动的方法和数据驱动的方法在拟议的混合学习框架中相互补偿。最终的亮度图像是通过通过多尺度曝光融合算法融合原始图像和两个虚拟图像获得的,具有正确定义的权重。实验结果表明,根据MEF-SSIM度量,所提出的亮算法优于现有算法。

A small ISO and a small exposure time are usually used to capture an image in the back or low light conditions which results in an image with negligible motion blur and small noise but look dark. In this paper, a single image brightening algorithm is introduced to brighten such an image. The proposed algorithm includes a unique hybrid learning framework to generate two virtual images with large exposure times. The virtual images are first generated via intensity mapping functions (IMFs) which are computed using camera response functions (CRFs) and this is a model-driven approach. Both the virtual images are then enhanced by using a data-driven approach, i.e. a residual convolutional neural network to approach the ground truth images. The model-driven approach and the data-driven one compensate each other in the proposed hybrid learning framework. The final brightened image is obtained by fusing the original image and two virtual images via a multi-scale exposure fusion algorithm with properly defined weights. Experimental results show that the proposed brightening algorithm outperforms existing algorithms in terms of the MEF-SSIM metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源