论文标题

共同建模运动和外观提示,用于强大的RGB-T跟踪

Jointly Modeling Motion and Appearance Cues for Robust RGB-T Tracking

论文作者

Zhang, Pengyu, Zhao, Jie, Wang, Dong, Lu, Huchuan, Yang, Xiaoyun

论文摘要

在这项研究中,我们通过共同建模外观和运动提示来提出一个新型的RGB-T跟踪框架。首先,为了获得强大的外观模型,我们开发了一种新型的晚期融合方法来推断RGB和热(T)模态的融合权重图。融合权重通过使用离线训练的全局和局部多模式融合网络确定,然后采用以线性结合RGB和T模式的响应图。其次,当外观提示不可靠时,我们全面地考虑了运动提示,即目标和摄像机运动,以使跟踪器强大。我们进一步提出了一个跟踪器开关,以灵活地切换外观和运动跟踪器。最近三个RGB-T跟踪数据集的许多结果表明,所提出的跟踪器的性能明显优于其他最先进的算法。

In this study, we propose a novel RGB-T tracking framework by jointly modeling both appearance and motion cues. First, to obtain a robust appearance model, we develop a novel late fusion method to infer the fusion weight maps of both RGB and thermal (T) modalities. The fusion weights are determined by using offline-trained global and local multimodal fusion networks, and then adopted to linearly combine the response maps of RGB and T modalities. Second, when the appearance cue is unreliable, we comprehensively take motion cues, i.e., target and camera motions, into account to make the tracker robust. We further propose a tracker switcher to switch the appearance and motion trackers flexibly. Numerous results on three recent RGB-T tracking datasets show that the proposed tracker performs significantly better than other state-of-the-art algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源